Skip to content

Expectation concepts

Validation of the code under test (the tested logic of procedure/function etc.) is performed by comparing the actual data against the expected data. utPLSQL uses a combination of expectation and matcher to perform the check on the data.

Example of a unit test procedure body.

begin
  ut.expect( 'the tested value', 'optional custom failure message' ).to_( equal('the expected value') );
end;

Expectation is a set of the expected value(s), actual values(s) and the matcher(s) to run on those values. You can also add a custom failure message for an expectation.

Matcher defines the comparison operation to be performed on expected and actual values. Pseudo-code:

  ut.expect( a_actual {data-type} [, a_message {varchar2}] ).to_( {matcher} );
  ut.expect( a_actual {data-type} [, a_message {varchar2}] ).not_to( {matcher} );

All matchers have shortcuts like below, sou you don't need to surround matcher with brackets, unless you want to pass it as parameter to the expectation.

  ut.expect( a_actual {data-type} ).to_{matcher};
  ut.expect( a_actual {data-type} ).not_to_{matcher};

Providing a custom failure message

You can provide a custom failure message as second argument for the expectation.

  -- Pseudocode
  ut.expect( a_actual {data-type}, a_message {varchar2} ).to_{matcher};
  -- Example
  ut.expect( 'supercat', 'checked superhero-animal was not a dog' ).to_( equal('superdog') );

If the message is provided, it is being added to the normal failure message returned by the matcher.

This is mostly useful when your expectations accept dynamic content, as you can provide additional context to make failing test results more readable.

Dynamic tests example

You have a bunch of tables and an archive functionality for them and you want to test if the things you put into live-tables are removed from live-tables and present in archive-tables.

procedure test_data_existance( i_tableName varchar2 ) 
  as
    v_count_real integer;
    v_count_archive integer;
  begin

    execute immediate 'select count(*) from ' || i_tablename || '' into v_count_real;
    execute immediate 'select count(*) from ' || i_tablename || '_ARCHIVE' into v_count_archive;

    ut.expect( v_count_archive, 'failure checking entry-count of ' || i_tablename || '_archive' ).to_( equal(1) );
    ut.expect( v_count_real, 'failure checking entry-count of ' || i_tablename ).to_( equal(0) );

  end;

 procedure test_archive_data
  as
  begin
    -- Arrange
   -- insert several data into real-tables here

    -- Act
    package_to_test.archive_data();

    -- Assert
    test_data_existance('TABLE_A');
    test_data_existance('TABLE_B');
    test_data_existance('TABLE_C');
    test_data_existance('TABLE_D');
end;
A failed output will look like this:
Failures:

  1) test_archive_data
      "failure checking entry-count of table_a_archive"
      Actual: 2 (number) was expected to equal: 1 (number) 
      at "UT_TEST_PACKAGE.TEST_DATA_EXISTANCE", line 12 ut.expect( v_count_archive, 'failure checking entry-count of ' || i_tablename || '_archive' ).to_( equal(1) );

Expecting exceptions

Testing is not limited to checking for happy-path scenarios. When writing tests, you often want to check that in specific scenarios, an exception is thrown.

Use the --%throws annotation, to test for expected exceptions

Example:

create or replace function divide(x varchar2, y varchar2) return number is
begin
  return x/y;
end;
/

create or replace package test_divide as
  --%suite(Divide function)

  --%test(Return divided numbers)
  procedure divides_numbers;

  --%test(Throws divisor equal)
  --%throws(-01476)
  procedure raises_divisor_exception;
end;  
/

create or replace package body test_divide is

  procedure divides_numbers is
  begin
    ut3.ut.expect(divide(6,2)).to_equal(3);
  end;

  procedure raises_divisor_exception is
    x integer;
  begin
    x := divide(6,0);
  end;

end;
/

exec ut3.ut.run('test_divide');

For details see documentation of the --%throws annotation.

Matchers

utPLSQL provides the following matchers to perform checks on the expected and actual values.

  • be_between
  • be_empty
  • be_false
  • be_greater_than
  • be_greater_or_equal
  • be_less_or_equal
  • be_less_than
  • be_like
  • be_not_null
  • be_null
  • be_true
  • equal
  • have_count
  • match

be_between

Validates that the actual value is between the lower and upper bound.

Example:

begin
  ut.expect( a_actual => 3 ).to_be_between( a_lower_bound => 1, a_upper_bound => 3 );
  ut.expect( 3 ).to_be_between( 1, 3 );
  --or
  ut.expect( a_actual => 3 ).to_( be_between( a_lower_bound => 1, a_upper_bound => 3 ) );
  ut.expect( 3 ).to_( be_between( 1, 3 ) );  
end;

be_empty

Unary matcher that validates if the provided dataset is empty.

Can be used with BLOB,CLOB, refcursor or nested table/varray passed as ANYDATA

Note: BLOB/CLOB that is initialized is not NULL but it is actually equal to empty_blob()/empty_clob().

Usage:

procedure test_if_cursor_is_empty is
  l_cursor sys_refcursor;
begin
  open l_cursor for select * from dual where 1 = 0;
  ut.expect( l_cursor ).to_be_empty();
  --or
  ut.expect( l_cursor ).to_( be_empty() );
end;

procedure test_if_cursor_is_empty is
  l_data ut_varchar2_list;
begin
  l_data := ut_varchar2_list();
  ut.expect( anydata.convertCollection( l_data ) ).to_be_empty();
  --or
  ut.expect( anydata.convertCollection( l_data ) ).to_( be_empty() );
end;

be_false

Unary matcher that validates if the provided value is false.

Usage:

begin
  ut.expect( ( 1 = 0 ) ).to_be_false();
  --or 
  ut.expect( ( 1 = 0 ) ).to_( be_false() );
end;

be_greater_or_equal

Checks if the actual value is greater or equal than the expected.

Usage:

begin
  ut.expect( sysdate ).to_be_greater_or_equal( sysdate - 1 );
  --or
  ut.expect( sysdate ).to_( be_greater_or_equal( sysdate - 1 ) );
end;

be_greater_than

Checks if the actual value is greater than the expected.

Usage:

begin
  ut.expect( 2 ).to_be_greater_than( 1 );
  --or 
  ut.expect( 2 ).to_( be_greater_than( 1 ) );
end;

be_less_or_equal

Checks if the actual value is less or equal than the expected.

Usage:

begin
  ut.expect( 3 ).to_be_less_or_equal( 3 );
  --or 
  ut.expect( 3 ).to_( be_less_or_equal( 3 ) );
end;

be_less_than

Checks if the actual value is less than the expected.

Usage:

begin
  ut.expect( 3 ).to_be_less_than( 2 );
  --or 
  ut.expect( 3 ).to_( be_less_than( 2 ) );
end;

be_like

Validates that the actual value is like the expected expression.

Usage:

begin
  ut.expect( 'Lorem_impsum' ).to_be_like( a_mask => '%rem#_%', a_escape_char => '#' );
  ut.expect( 'Lorem_impsum' ).to_be_like( '%rem#_%', '#' );
  --or 
  ut.expect( 'Lorem_impsum' ).to_( be_like( a_mask => '%rem#_%', a_escape_char => '#' ) );
  ut.expect( 'Lorem_impsum' ).to_( be_like( '%rem#_%', '#' ) );
end;

Parameters a_mask and a_escape_char represent valid parameters of the Oracle LIKE condition

be_not_null

Unary matcher that validates if the actual value is not null.

Usage:

begin 
  ut.expect( to_clob('ABC') ).to_be_not_null();
  --or 
  ut.expect( to_clob('ABC') ).to_( be_not_null() );
  --or 
  ut.expect( to_clob('ABC') ).not_to( be_null() );
end;

be_null

Unary matcher that validates if the actual value is null.

Usage:

begin
  ut.expect( cast(null as varchar2(100)) ).to_be_null();
  --or 
  ut.expect( cast(null as varchar2(100)) ).to_( be_null() );
end;

be_true

Unary matcher that validates if the provided value is true. - boolean

Usage:

begin 
  ut.expect( ( 1 = 1 ) ).to_be_true();
  --or 
  ut.expect( ( 1 = 1 ) ).to_( be_true() );
end;

have_count

Unary matcher that validates if the provided dataset count is equal to expected value.

Can be used with refcursor or table type

Usage:

procedure test_if_cursor_is_empty is
  l_cursor sys_refcursor;
begin
  open l_cursor for select * from dual connect by level <=10;
  ut.expect( l_cursor ).to_have_count(10);
  --or
  ut.expect( l_cursor ).to_( have_count(10) );
end;

match

Validates that the actual value is matching the expected regular expression.

Usage:

begin 
  ut.expect( a_actual => '123-456-ABcd' ).to_match( a_pattern => '\d{3}-\d{3}-[a-z]', a_modifiers => 'i' );
  ut.expect( 'some value' ).to_match( '^some.*' );
  --or 
  ut.expect( a_actual => '123-456-ABcd' ).to_( match( a_pattern => '\d{3}-\d{3}-[a-z]', a_modifiers => 'i' ) );
  ut.expect( 'some value' ).to_( match( '^some.*' ) );
end;

Parameters a_pattern and a_modifiers represent a valid regexp pattern accepted by Oracle REGEXP_LIKE condition

equal

The equal matcher is very restrictive. Test using this matcher succeeds only when the compared data-types are exactly the same. If you are comparing varchar2 to a number will fail even if the text contains the same numeric value as the number. The matcher will also fail when comparing a timestamp to a timestamp with timezone data-type etc. The matcher enables detection data-type changes. If you expect your variable to be a number and it is now some other type, the test will fail and give you early indication of a potential problem.

To keep it simple, the equal matcher will only succeed if you compare apples to apples.

Example usage

function get_animal return varchar2 is 
begin
  return 'a dog';
end;
/

create or replace package test_animals_getter is

    --%suite(Animals getter tests)

    --%test(get_animal - returns a dog)
    procedure test_variant_1_get_animal;
    --%test(get_animal - returns a dog)
    procedure test_variant_2_get_animal;
    --%test(get_animal - returns a dog)
    procedure test_variant_3_get_animal;
    --%test(get_animal - returns a dog)
    procedure test_variant_4_get_animal;
    --%test(get_animal - returns a dog)
    procedure test_variant_5_get_animal;
end;
/
create or replace package body test_animals_getter is

    --The below tests perform exactly the same check.
    --They use different syntax to achieve the goal. 
    procedure test_variant_1_get_animal is
      l_actual   varchar2(100) := 'a dog';
      l_expected varchar2(100);
    begin
      --Arrange
      l_actual := 'a dog';
      --Act
      l_expected := get_animal();
      --Assert
      ut.expect( l_actual ).to_equal( l_expected );
    end;

    procedure test_variant_2_get_animal is
      l_expected varchar2(100);
    begin
      --Act
      l_expected := get_animal();
      --Assert
      ut.expect( l_expected ).to_equal( 'a dog' );
    end;

    procedure test_variant_3_get_animal is
    begin
      --Act / Assert
      ut.expect( get_animal() ).to_equal( 'a dog' );
    end;

    procedure test_variant_4_get_animal is
    begin
      --Act / Assert
      ut.expect( get_animal() ).to_equal( 'a dog', a_nulls_are_equal => true );
    end;

    procedure test_variant_5_get_animal is
    begin
      --Act / Assert
      ut.expect( get_animal() ).to_( equal( 'a dog' ) );
    end;

    procedure test_variant_6_get_animal is
    begin
      --Act / Assert
      ut.expect( get_animal() ).to_( equal( 'a dog', a_nulls_are_equal => true ) );
    end;
end;

Comparing NULLs is by default a success! The a_nulls_are_equal parameter controls the behavior of a null = null comparison. To change the behavior of NULL = NULL comparison pass the a_nulls_are_equal => false to the equal matcher.

Comparing cursors, object types, nested tables and varrays

utPLSQL is capable of comparing compound data-types including: - ref cursors - object types - nested table/varray types

Notes on comparison of compound data

  • Compound data can contain elements of any data-type. This includes blob, clob, object type, nested table, varray or even a nested-cursor within a cursor.
  • Cursors, nested table and varray types are compared as ordered lists of elements. If order of elements differ, expectation will fail.
  • Comparison of compound data is data-type aware. So a column ID NUMBER in a cursor is not the same as ID VARCHAR2(100), even if they both hold the same numeric values.
  • Comparison of cursor columns containing DATE will only compare date part and ignore time by default. See Comparing cursor data containing DATE fields to check how to enable date-time comparison in cursors.
  • To compare nested table/varray type you need to convert it to anydata by using anydata.convertCollection()
  • To compare object type you need to convert it to anydata by using anydata.convertObject()
  • It is possible to compare PL/SQL records, collections, varrays and associative arrays. To compare this types of data, use cursor comparison feature of utPLSQL and TABLE operator in SQL query

utPLSQL offers advanced data-comparison options, for comparing compound data-types. The options allow you to: - define columns/attributes to exclude from comparison - define columns/attributes to include in comparison - and more

For details on available options and how to use them, read the advanced data comparison guide.

Diff functionality for compound data-types

When comparing compound data, utPLSQL will determine the difference between the expected and the actual data. The diff includes: - differences in column names, column positions and column data-type for cursor data - only data in columns/rows that differ

The diff aims to make it easier to identify what is not expected in the actual data.

Consider the following expected cursor data

ID (NUMBER) FIRST_NAME (VARCHAR2) LAST_NAME (VARCHAR2) SALARY (NUMBER)
1 JACK SPARROW 10000
2 LUKE SKYWALKER 1000
3 TONY STARK 1000000

And the actual cursor data:

GENDER (VARCHAR2) FIRST_NAME (VARCHAR2) LAST_NAME (VARCHAR2) SALARY (VARCHAR2) ID (NUMBER)
M JACK SPARROW 25000 1
M TONY STARK 1000000 3
F JESSICA JONES 2345 4
M LUKE SKYWALKER 1000 2

The two datasets above have the following differences: - column ID is misplaced (should be first column but is last) - column SALARY has data-type VARCHAR2 but should be NUMBER - column GENDER exists in actual but not in the expected (it is an Extra column) - data in column SALARY for row number 1 in actual is not matching expected - row number 2 in actual (ID=3) is not matching expected - row number 3 in actual (ID=4) is not matching expected - row number 4 in actual (ID=2) is not expected in results (Extra row in actual)

utPLSQL will report all of the above differences in a readable format to help you identify what is not correct in the compared dataset.

Below example illustrates, how utPLSQL will report such differences.

create or replace package test_cursor_compare as
  --%suite

  --%test
  procedure do_test;
end;
/

create or replace package body test_cursor_compare as
  procedure do_test is
    l_actual   sys_refcursor;
    l_expected sys_refcursor;
  begin
    open l_expected for
      select 1 as ID, 'JACK' as FIRST_NAME, 'SPARROW' AS LAST_NAME, 10000 AS SALARY
        from dual union all
      select 2 as ID, 'LUKE' as FIRST_NAME, 'SKYWALKER' AS LAST_NAME, 1000 AS SALARY
        from dual union all
      select 3 as ID, 'TONY' as FIRST_NAME, 'STARK' AS LAST_NAME, 100000 AS SALARY
        from dual;
    open l_actual for
      select 'M' AS GENDER, 'JACK' as FIRST_NAME, 'SPARROW' AS LAST_NAME, 1 as ID, '25000' AS SALARY
        from dual union all
      select 'M' AS GENDER, 'TONY' as FIRST_NAME, 'STARK' AS LAST_NAME, 3 as ID, '100000' AS SALARY
        from dual union all
      select 'F' AS GENDER, 'JESSICA' as FIRST_NAME, 'JONES' AS LAST_NAME, 4 as ID, '2345' AS SALARY
        from dual union all
      select 'M' AS GENDER, 'LUKE' as FIRST_NAME, 'SKYWALKER' AS LAST_NAME, 2 as ID, '1000' AS SALARY
        from dual;
    ut.expect(l_actual).to_equal(l_expected);
  end;
end;
/

When the test package is executed using:

set serverout on
exec ut.run('test_cursor_compare');
We get the following report:
test_cursor_compare
  do_test [.052 sec] (FAILED - 1)

Failures:

  1) do_test
      Actual: refcursor [ count = 4 ] was expected to equal: refcursor [ count = 3 ]
      Diff:
      Columns:
        Column <ID> is misplaced. Expected position: 1, actual position: 4.
        Column <SALARY> data-type is invalid. Expected: NUMBER, actual: VARCHAR2.
        Column <GENDER> [position: 1, data-type: CHAR] is not expected in results.
      Rows: [ 4 differences ]
        Row No. 1 - Actual:   <SALARY>25000</SALARY>
        Row No. 1 - Expected: <SALARY>10000</SALARY>
        Row No. 2 - Actual:   <FIRST_NAME>TONY</FIRST_NAME><LAST_NAME>STARK</LAST_NAME><ID>3</ID><SALARY>100000</SALARY>
        Row No. 2 - Expected: <ID>2</ID><FIRST_NAME>LUKE</FIRST_NAME><LAST_NAME>SKYWALKER</LAST_NAME><SALARY>1000</SALARY>
        Row No. 3 - Actual:   <FIRST_NAME>JESSICA</FIRST_NAME><LAST_NAME>JONES</LAST_NAME><ID>4</ID><SALARY>2345</SALARY>
        Row No. 3 - Expected: <ID>3</ID><FIRST_NAME>TONY</FIRST_NAME><LAST_NAME>STARK</LAST_NAME><SALARY>100000</SALARY>
        Row No. 4 - Extra:    <GENDER>M</GENDER><FIRST_NAME>LUKE</FIRST_NAME><LAST_NAME>SKYWALKER</LAST_NAME><ID>2</ID><SALARY>1000</SALARY>
      at "UT3.TEST_CURSOR_COMPARE", line 22 ut.expect(l_actual).to_equal(l_expected);


Finished in .053553 seconds
1 tests, 1 failed, 0 errored, 0 disabled, 0 warning(s)

utPLSQL identifies and reports on columns: - column misplacement - column data-type mismatch - extra/missing columns

When comparing rows utPLSQL: - reports only mismatched columns when rows match - reports columns existing in both data-sets when whole row is not matching - reports whole extra (not expected) row from actual when actual has extra rows - reports whole missing (expected) row from expected when expected has extra rows

Object and nested table data-type comparison examples

When comparing object type / nested table / varray, utPLSQL will check: - if data-types match - if data in the compared elements is the same.

The diff functionality for objects / nested tables / varrays is similar to diff on cursors. When diffing, utPLSQL will not check name and data-type of individual attribute as the type itself defines the underlying structure.

Below examples demonstrate how to compare object and nested table data-types.

Object type comparison.

create type department as object(name varchar2(30))
/
create or replace function get_dept return department is 
begin
 return department('IT');
end;
/
create or replace package demo_dept as 
  --%suite(demo)

  --%test(demo of object to object comparison)
  procedure test_department; 
end;
/
create or replace package body demo_dept as 
  procedure test_department is
    v_actual   department;
  begin
    --Act/ Assert
    ut.expect( anydata.convertObject( get_dept() ) ).to_equal( anydata.convertObject( department('HR') ) );
  end;
end;
/
begin
  ut.run('demo_dept');
end;
/

drop package demo_dept;
drop function get_dept;
drop type department;

Table type comparison.

create type department as object(name varchar2(30))
/
create type departments as table of department
/
create or replace function get_depts return departments is 
begin
 return departments( department('IT'), department('HR') );
end;
/
create or replace package demo_depts as 
  --%suite(demo)

  --%test(demo of collection comparison)
  procedure test_departments; 
end;
/
create or replace package body demo_depts as 
  procedure test_departments is
    v_expected departments;
    v_actual   departments;
  begin
    v_expected := departments(department('HR'), department('IT') );
    ut.expect( anydata.convertCollection( get_depts() ) ).to_equal( anydata.convertCollection( v_expected ) );
  end;
end;
/
begin
  ut.run('demo_depts');
end;
/

drop package demo_dept;
drop type function get_depts;
drop type departments;
drop type department;

Comparing cursor data containing DATE fields

Important note

utPLSQL uses XMLType internally to represent rows of the cursor data. This is by far the most flexible method and allows comparison of cursors containing LONG, CLOB, BLOB, user defined types and even nested cursors. Due to the way Oracle handles DATE data type when converting from cursor data to XML, utPLSQL has no control over the DATE formatting. The NLS_DATE_FORMAT setting from the moment the cursor was opened determines the formatting of dates used for cursor data comparison. By default, Oracle NLS_DATE_FORMAT is timeless, so data of DATE datatype, will be compared ignoring the time component.

You should use procedures ut.set_nls, ut.reset_nls around cursors that you want to compare in your tests. This way, the DATE data in cursors will be properly formatted for comparison using date-time format.

The example below makes use of ut.set_nls, ut.reset_nls, so that the date in l_expected and l_actual is compared using date-time formatting.

create table events ( description varchar2(4000), event_date  date )
/
create or replace function get_events return sys_refcursor is
  l_result sys_refcursor;
begin
  open l_result for select description, event_date from events;
  return l_result;
end;
/

create or replace package test_get_events is
  --%suite(get_events)

  --%beforeall
  procedure setup_events;
  --%test(returns event within date range)
  procedure get_events_for_date_range;
end;
/

create or replace package body test_get_events is

  gc_description constant varchar2(30) := 'Test event';
  gc_event_date  constant date := to_date('2016-09-08 06:51:22','yyyy-mm-dd hh24:mi:ss');
  gc_second      constant number := 1/24/60/60;
  procedure setup_events is
  begin
    insert into events (description, event_date) values (gc_description, gc_event_date);
  end;

  procedure get_events_for_date_range is
    l_actual            sys_refcursor;
    l_expected_bad_date sys_refcursor;
  begin
    --Arrange
    ut.set_nls(); -- Change the NLS settings for date to be ISO date-time 'YYYY-MM-DD HH24:MI:SS' 
    open l_expected_bad_date for select gc_description as description, gc_event_date + gc_second as event_date from dual;
    --Act
    l_actual := get_events();
    ut.reset_nls(); -- Change the NLS settings after cursors were opened
    --Assert
    ut.expect( l_actual ).not_to_equal( l_expected_bad_date );
  end;

  procedure bad_test is
    l_expected_bad_date sys_refcursor;
  begin
    --Arrange
    open l_expected_bad_date for select gc_description as description, gc_event_date + gc_second as event_date from dual;
    --Act / Assert
    ut.expect( get_events() ).not_to_equal( l_expected_bad_date );
  end;

end;
/

begin
  ut.run('test_get_events');
end;
/

drop table events;
drop function get_events;
drop package test_get_events;
In the above example: - The test get_events_for_date_range will succeed, as the l_expected_bad_date cursor contains different date-time then the cursor returned by get_events function call. - The test bad_test will fail, as the column event_date will get compared as DATE without TIME.

Negating a matcher

Expectations provide a very convenient way to perform a check on a negated matcher.

Syntax to check for matcher evaluating to true:

begin 
  ut.expect( a_actual {data-type} ).to_{matcher};
  ut.expect( a_actual {data-type} ).to_( {matcher} );
end;

Syntax to check for matcher evaluating to false:

begin
  ut.expect( a_actual {data-type} ).not_to_{matcher};
  ut.expect( a_actual {data-type} ).not_to( {matcher} );
end;

If a matcher evaluated to NULL, then both to_ and not_to will cause the expectation to report failure.

Example:

begin
  ut.expect( null ).to_( be_true() );
  ut.expect( null ).not_to( be_true() );
end;
Since NULL is neither true nor false, both expectations will report failure.

Supported data types

The matrix below illustrates the data types supported by different matchers.

Matcher blob boolean clob date number timestamp timestamp
with
timezone
timestamp
with
local
timezone
varchar2 interval
year
to
month
interval
day
to
second
cursor nested
table
/ varray
object
be_not_null X X X X X X X X X X X X X X
be_null X X X X X X X X X X X X X X
be_false X
be_true X
be_greater_than X X X X X X X
be_greater_or_equal X X X X X X X
be_less_or_equal X X X X X X X
be_less_than X X X X X X X
be_between X X X X X X X X
equal X X X X X X X X X X X X X X
match X X
be_like X X
be_empty X X X X
have_count X X

Last update: July 11, 2018 00:51:41
Created: January 15, 2017 02:28:15